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Practical techniques for a three-dimensional FEM
analysis of incompressible fluid flow contained with slip

walls and a downstream tube bundle

Yuzuru Eguchi*,1

Hydraulics Department, Central Research Institute of Electric Power Industry, Abiko-shi, Chiba, Japan

SUMMARY

Two practical techniques are proposed in this paper to simulate a flow contained in a plenum with a
downstream tube bundle under a PC environment. First, a technique to impose slip wall conditions on
smooth-faced planes and sharp edges is proposed to compensate for the mesh coarseness relative to
boundary layer thickness. In particular, a new type of Poisson equation is formulated to simultaneously
satisfy both such velocity boundary conditions on walls and the incompressibility constraint. Second, a
numerical model for a downstream tube bundle is proposed, where hydraulic resistance in a tube is
imposed as a traction boundary condition on a fluid surface contacting the tube bundle end. The
effectiveness of the techniques is numerically demonstrated in the application to a flow in a condenser
water box. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: boundary condition; finite element method; Poisson equation; slip edge; slip wall; tube
bundle

1. INTRODUCTION

Since the capabilities of recent PCs come to exceed those of supercomputers used a decade ago,
it is now possible to solve practical problems of complicated three-dimensional geometries at
hand with a PC. In the present paper, the author proposes two finite element techniques
suitable for a practical flow simulation under a PC environment, with special emphasis on an
application to a flow in a condenser water box.

In a PC computation, mesh subdivision must be still coarse in comparison with high-
performance computers due to the relatively small main memory capacity and relatively slow
CPU speed. In such a situation, the physical boundary layer thickness is much smaller than the
mesh size, especially in a high-Re flow, and imposition of the slip wall condition can be more
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appropriate than that of the non-slip wall condition. Engelman et al. [1] proposed an
implementation of a slip wall condition, where velocity vectors and momentum equations on
a boundary are transformed into those of the other co-ordinates aligned to the boundary
normal direction. However, in the literature there are on specific remarks on the treatment for
an external sharp edge in three-dimensional configuration, where unrealistic velocity would be
produced with straightforward application of the slip wall condition, as shown in Figure 1. In
the present paper, the author proposes a technique for imposition of the slip condition, which
is applicable not only to flat walls but also to sharp edges.

The other unique technique proposed here is a numerical model for a tube bundle
downstream of a condenser water box. In the model, the traction, which is estimated with the
pressure loss due to the flow resistance in a tube, is given on fluid surfaces facing the upstream
end of the tube bundle. A numerical example is presented to show the effectiveness of the
formulation.

In Section 2, theoretical aspects are presented, including treatments of the slip conditions, a
time integration scheme, a new type of Poisson equation and a tube bundle model. In Section
3, some numerical results obtained on a PC are shown, putting stresses on the algorithm/code
verification, effect of the wall boundary condition (BC) and an application to a flow in a
condenser water box. Conclusions are drawn in Section 4.

Figure 1. Natural convection in a bottle with sharp edges.
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2. THEORETICAL BACKGROUND

2.1. Basic equations

The incompressible transient Navier–Stokes equations are written as follows:

u� i+ujui, j+p,i−�effui, j, j= fi (1)

ui,i=0 (2)

where ui is the ith (i=1, 2, 3) velocity component; p is the kinematic pressure (pressure divided
by fluid density); fi is the body force per unit mass; the superposed dot denotes the temporal
derivative; ( ),j denotes the spatial derivative in the jth direction. Summation convention is
used for the repeated subscripts. An effective kinematic viscosity, �eff, is used instead of a
molecular kinematic viscosity, �, to formally represent turbulence, though no turbulent model
such as the k−� model is introduced so far. The following BCs are assumed to supplement
Equations (1) and (2):

ui=ui
BC on �u (3a)

uini=0, �it i
1=0, �it i

2=0 on �s-w (3b-i)

uin i
A=0, uin i

B=0, �it i
AB=0 on �s-e (3b-ii)

�j=� i
BC on �� (3c)

where traction divided by fluid density, �i, is defined as follows:

�i= (−p�ij+�effui, j)nj (4)

In the above, �u denotes the velocity-prescribed boundary including non-slip walls; �s-w

denotes the slip boundary except 90°-type slip edge (see Section 2.3.2); �s-e denotes the 90°-type
slip edge; �� denotes the traction-prescribed boundary; nj stands for the jth component of an
outward unit normal vector on boundary; t i

1 and t i
2 are the unit tangential vectors on a

boundary surface; ni
A and ni

B stand for outward unit normal vectors on two planes A and B,
forming a 90°-type edge; t j

AB is a unit vector parallel to the ridge of the 90°-type edge or
normal to ni

A and ni
B; and �ij is the Kronecker delta. It is assumed the following relations hold

for the above three types of boundaries:

�u��s (��s-w��s-e)���=�all (whole boundary) (5a)

�u��s=� (null), �s���=�, �u���=� (5b)
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It is also assumed that the prescribed velocity, uj
BC, is independent of time t, i.e. u� i

BC=0, which
means all boundaries are fixed in space.

2.2. Spatial discretization

The streamline upwind/Petrov–Galerkin (SUPG) method [2] is used to formulate the weighted
residual forms of Equations (1) and (2), though all the computations presented in the paper
were performed with the Galerkin formulation by reducing the discontinuous weighting
function of the SUPG method to zero. For the spatial discretization, the trial solution for
velocity, ui, and the continuous weighting function for the momentum equations, wk, are
approximated as ��ui� and ��wk� with a tri-linear interpolation function �� (� is node
number). The trial solution for pressure, p, and the weighting function for the continuity
equation, q, are approximated as ��p� and ��q� with a piecewise constant function, �� (� is
element number). The spatially discretized equations are finally expressed in the following
matrix form

M�� +B�+K�−Cp= fb+ ft (6)

CT�=0 (7)

where M is the mass matrix; B is the convection matrix; K is the diffusion matrix; C is the
gradient matrix; fb is the body force vector; ft is the traction vector; CT is the divergence
matrix; p is a vector composed of unknown pressures of all elements, p�. Velocity vector � is
composed of all nodal velocities ui�, both specified and unspecified. The velocity BCs are
introduced in a time integration process, which is explained in the subsequent two sections.

2.3. Imposition of slip and non-slip wall conditions

2.3.1. Slip wall treatment. A slip velocity, Vs, can be calculated as follows by subtracting the
normal component from an arbitrary velocity, V*:

Vs=V*− (V* ·n)n (8)

where n= (nx, ny, nz) is a unit normal vector on a slip wall; (a ·b) denotes inner product of
vectors a and b. The above equation indicates that the slip wall condition can be fulfilled by
pre-multiplying a 3×1 velocity vector at node � by the following 3×3 projection matrix, H� :

H�=

�
�
�
�
�

1−nx
2 −nynx −nznx

−nxny 1−ny
2 −nzny

−nxnz −nynz 1−nz
2

�
�
�
�
�

(9)

2.3.2. Edge treatment. Special care has to be taken to singular configurations such as edges
where one cannot straightforwardly define the normal vector. In the paper, singular configura-
tions are classified into two types, i.e. 270°-type internal edge and 90°-type external edge as
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shown in Figure 2(a) and (b) respectively. Velocities on a 270°-type edge are treated in the
same manner as the slip wall explained in the above, being of 2 df. Attention has to be paid
to the selection of a normal vector, because an inappropriate choice of the normal vector leads
to net inflow or net outflow of mass through the edge walls. Engelman et al. [1] proposed a
method to define the normal vector, which is consistent with mass balance. In the present
study, the unit normal vector n� at node � on a 270°-type edge is similarly calculated as
follows:

n�=�
m

Smnm
���

m

Smnm
�

(10)

where Sm and nm are the area of mth element surface sharing a velocity node � and its outward
unit normal vector respectively. �a � denotes the length of vector a.

On the other hand, imposition of the slip wall condition on a 90°-type edge would produce
unrealistic velocity vectors, even though mass is conserved. An example is shown in Figure 1,
where we can see the fluid penetrates the fluid boundary at the bottom of the bottle and at the
top free surface. The author proposes a unique technique to circumvent such unrealistic flow.
That is, velocities on the 90°-type edges are assumed to slip only along the edge line (ridge) in
one-dimensional manner. This condition can be fulfilled by doubly pre-multiplying a velocity
at node � by the projection matrices, H�

A and H�
B. The matrices H�

A and H�
B denote the slip

wall matrices defined by Equation (9), where the unit normal vectors standing on face A and
B are used respectively, assuming faces A and B form a 90°-type edge at node �. Then the
projection matrix for the 90°-type edges, W� is defined as follows:

W�=H�
AH�

B (11)

2.3.3. BC imposition matrix. The velocity-prescribed condition such as non-slip wall condition
can be imposed by pre-multiplying an acceleration increment on such boundaries by the zero
projection matrix. Then, a global matrix G to impose various velocity BCs can be defined as
follows, and is used in a time integration process:

Figure 2. Permitted df of velocity at a node on an edge (an arrow represents a free velocity component).
(a) Slice of 270°-type edge. (b) Slice of 90°-type edge.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 279–295



Y. EGUCHI284

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

O1 O ··· O
···

O1 O ··· O
W1 O ··· O

···
Wj O ··· O

(12)H1 O ··· OG=
···

Sym. HK O ··· O
E1 O ··· O

···
EN

In the above matrix, O� is the 3×3 zero matrix; E� is the 3×3 identity matrix; I is the number
of velocity nodes on velocity-prescribed boundaries, �u ; J is the number of the velocity nodes
on the 90°-type slip edge, �s-e; K is the number of velocity nodes on slip walls, �s-w, including
the 270°-type edge; and N is the number of the other unconstrained velocity nodes. In an
actual computation, the order of the sub-matrices O�, W�, H� and E� must be shuffled
depending on the velocity type at node �, i.e. whether node � is located on �u, or on �s-e, or
on �s-w or otherwise respectively.

2.4. Time integration scheme

2.4.1. Fully explicit time integration. The ordinary differential equation (ODE) system (6) must
be integrated in time with satisfying the incompressibility constraint (7). Usually the projection
method (whose family is named as the fractional method, the splitting method, the pressure
correction method, etc.) is used to uncouple the incompressibility constraint instead of solving
fully coupled large system, i.e. equation system (6) is implicitly or explicitly integrated in time
to yield intermediate velocity, and then the intermediate velocity is projected into a divergence-
free subspace by solving a pressure Poisson equation.

In an implicit method, the computational cost for matrix inversion must be suppressed for
a practical computation, keeping its inherent phase accuracy. For example, Gresho and Chan
[3] proposed semi-implicit (explicit for convection terms, implicit for viscous terms) schemes to
realise computational efficiency by strategically utilizing a lumped mass matrix in a part of
discretized Navier–Stokes equations. In an explicit method, phase errors associated with a
lumped mass matrix must be suppressed. An example is the predictor/multi-corrector scheme
proposed by Brooks and Hughes [2], where the consistent mass is partially used to reduce the
phase errors.

In the present study, the predictor/multi-corrector scheme is used for the time integration
because the use of the BC matrix (12) is compatible with a fully explicit scheme. Starting with
a velocity, �0, satisfying the velocity BCs, and an initial pressure, p0, the time integration
scheme combined with the BC imposition matrix G is summarized as follows:

[O] Set-up of initial condition
1. initialize time and time step counter: t=0, n=0
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2. set an initial velocity and an initial pressure: �(n)=�0, p(n)=p0

3. compute the initial acceleration: a(n)=M−1(fb+ ft−B�0−K�0+Cp0)
4. impose the velocity BC: a(n)=Ga(n)

[i] Predictor phase
1. reset inner-iteration counter: k=0
2. set initial guesses of velocity, acceleration and pressure at the next time step, n+1

�k=�(n)+�t(1−�)a(n), ak=0, pk=p(n)

[ii] Corrector phase
1. compute temporary acceleration increment

�a*k=M−1(fb+ ft−Mak−K�k−B�k+Cpk)

2. impose velocity BC; �a*k=G�a*k

3. compute temporary velocity; �*k=�k+��t�a*k

4. solve pressure Poisson equation; CTGM−1C�pk= −CT�*k/��t
5. correct acceleration increment; �ak=�a*k+GM−1C�pk

6. correct velocity; �k+1=�k+��t�ak

7. correct acceleration; ak+1=ak+�ak

8. correct pressure; pk+1=pk+�pk

9. IF ��ak��� (not converged) AND k+1�Kmax,
THEN: bump inner iteration step, k, and iterate [ii]
ELSE: advance time; t= t+�t, �(n+1)=�k+1, a(n+1)=ak+1, p(n+1)=pk+1,
bump time step, n, and return to [i] (go to the next time step)

In the above, M is a lumped mass matrix; M is a consistent mass matrix; � is a time integration
parameter; � is a convergence criterion; Kmax is a prescribed upper limit of the multi-corrector
iteration.

The consistent mass matrix M appearing in the right-hand side of the equation in step 1 in
the corrector phase contributes toward reducing the phase error as numerically shown in the
literature [2]. The time integration parameter, �, affects the accuracy and stability of the
integration. If the parameter is set at 1/2 and if the multi-corrector iteration converges, the
solution should be almost the same as the one obtained by the trapezoidal rule for velocities
and fully implicit rule for pressure with the consistent mass matrix.

2.4.2. A new type of pressure Poisson equation. The unique Poisson equation appearing at step
4 in the corrector phase is rewritten as follows

[CTGM−1C ]{�pk}={−CT�*k/��t} (13)

The above equation is formed by the requirement of the velocity BCs for the corrected
acceleration increment, �ak, and the requirement of the divergence-free condition for the
corrected velocity, �k+1. The Poisson equation is iteratively solved by the preconditioned
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conjugate gradient (PCG) method with the diagonal scaling. The solution, �k+1, naturally
satisfies both the velocity BCs specified and the incompressibility constraint.

The Dirichlet BCs for velocity are usually imposed by discarding momentum equations
corresponding to the specified velocities and by transposing matrix elements relating to the
velocity-prescribed BCs into the right-hand side (e.g. Gresho and Chan [3]). The counterparts
of Equations (6) and (7) processed with these treatments are expressed as follows

M �u� +B �u+K �u−C �p= f (6�)

C �Tu=g (7�)

where u denotes a vector containing only unspecified velocities, and prime attached to a matrix
denotes condensation by eliminating rows and/or columns corresponding to velocity BCs. The
right-hand side vectors, f and g, contain the transposed portions corresponding to the BCs.
Combining Equations (6�) and (7�) yields the conventional pressure Poisson equation as
follows:

[C �TM �−1C �]{p}={g� −C �TM �−1(f−B �u−K �u)} (14)

In contrast with the conventional pressure Poisson equation, Equation (14), no matrix
condensation is needed in Equation (13) in the present method. Furthermore, though the
matrix [CTGM−1C ] seems non-symmetric at first glance, it can be shown that matrix
[CTGM−1C ] is symmetric and positive-semi-definite as well as the conventional ones. These
properties allow to use most iterative solvers (e.g. Gresho et al. [4]) and to implement
slip/non-slip conditions in an existing code without major modification such as matrix
condensation and local co-ordinates transformation.

2.5. Model of a downstream tube bundle

A tube bundle downstream of a water box is modeled in this paper by imposing the pressure
of flow resistance in tubes, onto fluid surfaces contacting the tube bundle end. Since one
cannot specify pressures as the Dirichlet BC in a pressure Poisson equation (e.g. Gresho et al.
[5]), the traction, instead of the pressure, is imposed on the fluid surfaces through the traction
vector, ft. Through a numerical result imposed with the traction is not completely identical to
that with the pressure for low Re flow, as shown by Yagawa and Eguchi [6], the difference
between both is negligibly small in most of the flows arising in a heat exchanger because the
inertial term usually dominates over the viscous term. Then, the traction (divided by density,
�) on the fluid surface contacting the tube bundle end, � i

BC, is approximated by the following:

� i
BC= − (�P/�)ni (15)

The pressure loss due to the flow resistance, �P, is calculated as follows with the aid of an
empirical formula for the pressure loss in a tube:
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�P=0.5(�in+�out+�tube)� �Utube�Utube (16a)

�tube=L/d(0.79 ln Ret−1.64)2 (16b)

where �in is an inlet loss coefficient (e.g. 0.5); �out is an outlet loss coefficient (e.g. 1.0); �tube is
a friction loss coefficient; L is a tube length; d is a tube diameter; Ret is the tube Reynolds
number defined as Utubed/�. The velocity in a tube, Utube, is calculated by Utube=Un/	, where
Un is a normal velocity averaged over an element surface contacting a tube bundle end, and
	 is the ratio of the total tube hole areas against the fluid surface area. Then, the traction
vector due to the tube resistance is expressed by the following:

ft= −
�

��

��(�P/�)ni d�= −
�

��

��0.5(�in+�out+�tube)�Un�Unni/	
2 d� (17)

The traction force (17) is treated in a semi-implicit manner in step 1 in the corrector phase,
intending to improve the numerical stability. The first part of the normal velocity, �Un�, is
computed explicitly with the known velocity at the former inner-iteration step, �k, while the
rest, Un, is assumed unknown and integrated implicitly with the unknown temporary velocity,
�*k, as shown below

ft= −
�

��

��0.5(�in+�out+�tube)�nj� j�
k �(nl�*l�k)ni/	

2 d� (18)

With Equation (18) and the equation in step 3 in the corrector phase, the equation in step
1 can be replaced by the following two equations:

(E−��tM� −1F)�*k=�k+��tM� −1(fb−Mak−K�k−B�k+Cpk) (19)

�a*k= (�*k−�k)/��t (20)

where E is the identity matrix, and F is a matrix composed of the following 3×3 sub-matrix
�� corresponding to a velocity at node �

��= −
�

��

��0.5(�in+�out+�tube)�nj� j�
k �/	2 d�

�
�
�
�
�

nx
2 nynx nznx

nxny ny
2 nzny

nxnz nynz nz
2

�
�
�
�
�

(21)

3. COMPUTATIONAL RESULTS

The numerical algorithm explained in the above was coded in FORTRAN90 and all computa-
tions were performed on a PC (CPU=266 MHz). The standard Galerkin formulation was
used for all the computations because the SUPG formulation turned out to produce weaker
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circulation in the cavity flow problem shown in the subsequent section when Re number
exceeds, say, 1000.

Figure 3. (a) Mesh subdivisions and streamfunction for a driven cavity flow. (b) Velocity vectors at
nodes of a driven cavity flow (non-slip wall, Re=5000).
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3.1. Code �erification

To confirm the validity of the algorithm and the code implementation, a classical problem
of a two-dimensional driven cavity flow was computed with the three-dimensional code.
Figure 3(a) shows the three-dimensional slab model of 0.1×1×1 m divided into 1×50×
50 meshes, together with streamfunction obtained at the quasi-steady state. The upper lid is
driven at velocity of 1 m s−1, including the corners (i.e. ‘leaky’ lid). The slip wall condi-
tions are applied to the planes of x=0 and x=0.1 to realize a pseudo two-dimensional
flow, while all the other three walls are assumed as non-slip boundaries. The kinematic
viscosity of the fluid is 0.0002 m2 s−1 to set the Re number at 5000. Time integration was
performed with a time increment of 0.0005 s until 30 s using a result of Re=1000 as the
initial condition. Figure 3(b) shows the velocity vectors, emphasizing the velocity distribu-
tions along vertical and horizontal centerlines. Quantitative comparison with other results
[3,7] is made in Table I, which shows that the present result is in good agreement with the
others.

3.2. Slip wall computation for ca�ity flow

To see the effect of the wall condition, the driven cavity flow (Re=5000) was computed
with the same mesh, using the slip wall and the slip edge conditions for all the boundaries
except the upper driven lid. The quasi-steady state was reached with the final time in-
crement of 0.0005 s. Figure 4(a) and (b) show the streamfunction and the velocity vec-
tors respectively. It is seen that there is neither a boundary layer near the walls nor anti-
clockwise small vortices in the cavity corners. The maximum and minimum velocities on the
centerlines are considerably exaggerated as shown in Table II. The absolute value of the
minimum streamfunction is about 1.5 times larger than that of the results with the non-slip
case.

Table I. Quantitative comparison of a driven cavity flow (Re=5000).

AuthorsQuantity

Ghia et al. [7] Gresho and Chan [3]a Present study

1×50×50Number of mesh 256×256 50×50
−0.101−0.088−0.119Minimum streamfunction

(0.512, 0.535)b (not available) (0.533, 0.567)
Minimum � on vertical centerline (CL) −0.376−0.436 −0.379

(0.5, 0.073)(0.5, 0.074)(0.5, 0.070)
−0.507Minimum w on horizontal CL −0.494−0.554

(0.953, 0.5) (0.953, 0.5) (0.951, 0.5)
Maximum w on horizontal CL 0.3640.436 0.360

(0.074, 0.5) (0.087, 0.5)(0.078, 0.5)

a Only the result obtained with ‘Projection 2’ method is shown here.
b A pair of numbers in parenthesis in Tables I and II denotes the two-dimensional location.
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Figure 4. (a) Mesh subdivisions and streamfunction. (b) Velocity vectors of a driven cavity flow (slip wall
condition, Re=5000).
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Table II. Computational result of driven cavity flow with slip wall and slip edge conditions (Re=5000).

Results under slipQuantity Ratio against
non-slip resultconditions

−0.155 (0.5, 0.5) 1.53Minimium streamfunction
Minimum � on vertical CL −0.929 (0.5, 0.0) 2.47
Minimum w on horizontal CL −0.985 (1.0, 0.5) 1.99

0.898 (0.0, 0.5)Maximum w on horizontal CL 2.47

Figure 5. Finite element model for flow in a condenser water box.

3.3. Application to a condenser water box

The code is applied to simulation of a flow in a condenser water box. The water first
enters a condenser water box through an inlet pipe and exits it to run inside tens of
thousands of heat transfer tubes. The geometry of the condenser water box is idealized in
the present study as shown in Figure 5. The flow region is subdivided with 11080 eight-
node iso-parametric brick-like elements, sharing 12431 velocity nodes. A constant velocity is
specified on the inlet plane, while the slip wall and slip edge conditions are used for all the
walls. A tube bundle specified in Table III is assumed downstream of the whole outlet
plane. The other computational conditions are tabulated in Table IV.

Figure 6 shows the velocity vectors on the walls and on the outlet plane (y= −1) in a
quasi-steady state. It is seen that the slip velocity on the walls is plausible, including the 90°
edge along the rim of the water box bottom and the 270° edge along the joint of the inlet
pipe and the water box bottom. Figure 7 shows the mass flow rate (unit: ton s−1 m−2)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 279–295
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Table III. Specification of the downstream tube bundle.

Tube diameter, d Tube hole areaTube length, Kinematic viscosity Inlet plus outlet loss
for Ret, � (m2 s−1)L (m) coefficients, �in+�out(m) ratio, 	

0.506 1.51×10−60.03517.8

Table IV. Computational conditions for water box flow

Iteration limitTimeTime Number ofEffectiveInlet
integration in correctorincrement,velocity kinematic time steps
parameter,�t (s) phase, Kmaxviscosity, (terminal time)(m s−1)

�eff (m2 s−1) �

0.02 0.6 5000 (100 s) 31 0.01

through the outlet plane or the tube plate, assuming the density of fluid is 1 ton m−3. Figure
8 shows the kinematic pressure distribution on the solid walls. The pressure distribution
indicates that high pressure appears not only in the jet impingement area, but also in the upper
part of the outlet due to the larger pressure loss generated by the flow resistance in the tube
bundle.

Figure 6. Velocity vectors on walls (black arrows) and on outlet plane (gray arrows with hollow head).
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Figure 7. Flow rate distribution on the outlet plane (tube plate).

4. CONCLUSIONS

A technique to impose the slip wall and slip edge conditions has been proposed for a
practical three-dimensional flow simulation under a PC environment. A special matrix to
fulfill the velocity BCs is derived and is used in the fully explicit time integration process
with a new type of pressure Poisson equation. Though the slip wall condition tends to yield
exaggerated wall velocities, the proposed technique may be useful to figure out primary
flow pattern on a crude mesh for screening several design options or to develop turbulence
models for a solid wall.

Another unique technique has also been proposed to represent a tube bundle downstream
of a contained flow. A simulation of a flow in the condenser water box has demonstrated
that the technique enables to solve the interaction between a plenum flow and a down-
stream tube bundle, and to predict a flow rate distribution in a tube bundle of a heat
exchanger. Experimental verification of the present model is our future work.
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Figure 8. Kinematic pressure on walls of inlet pipe and water box.
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